
Bachelor’s Thesis

Überwachung des Grid-Ressourcen-
Zentrums GoeGrid mit HappyFace

Meta-Monitoring of the Grid Resource
Centre GoeGrid with HappyFace

prepared by

Georg Jahn
from Leinefelde

at the II. Institute of Physics

Thesis number: II.Physik-UniGö-BSc-2011/05

Thesis period: 7th April 2011 until 14th July 2011

Supervisors: Dr. Jörg Meyer, Dr. Pavel Weber

First referee: Prof. Dr. Arnulf Quadt

Second referee: Prof. Dr. Johannes Haller

Abstract
Um eine hohe Produktivität zu gewährleisten, wird das Rechen-Cluster GoeGrid (ein
ATLAS Tier 2 Zentrum des LHC Computing Grid) ständig von mehreren Programmen
überwacht. Zur einfacheren und effektiveren Wartung wird das Meta-Monitoring System
HappyFace eingesetzt, das eine Zusammenfassung von Überwachungsinformationen aus
verschiedenen Quellen erstellt. Im Rahmen dieser Bachelorarbeit wurde die lokale Happy-
Face Instanz komplett überarbeitet und erweitert; zudem wurde auch an den HappyFace
Kernmodulen gearbeitet. Viele der Änderungen sind in die öffentliche HappyFace Ver-
sion eingearbeitet worden, um schließlich auch andere Rechenzentren von den Beiträgen
profitieren zu lassen.

The computer cluster GoeGrid, employed as an ATLAS Tier 2 centre for the LHC Com-
puting Grid, is constantly monitored by several tools to ensure an effective operation. In
order to simplify and improve the maintenance of GoeGrid, the meta-monitoring system
HappyFace summarises monitoring information from a number of sources. In the course
of this Bachelor’s Thesis, the local installation of HappyFace was completely revised, new
information sources were included, and a number of changes to the HappyFace frame-
work itself were made. Many contributions were also submitted to the central HappyFace
repository, so that other sites may take advantage of them.

Keywords: The HappyFace Project, Meta-Monitoring, GoeGrid, Grid Computing,
ATLAS, WLCG

iii

Contents

1. Introduction 1
1.1. The Worldwide LHC Computing Grid . 1

1.1.1. Grid Computing . 3
1.1.2. The Tier Sites . 4

2. The Grid Resource Centre GoeGrid 5
2.1. Establishment . 5
2.2. Hardware Setup . 6
2.3. Software Setup . 6

3. The HappyFace Project 9
3.1. Meta-Monitoring . 9
3.2. HappyFace Concepts . 10
3.3. Recent Developments . 12

3.3.1. Core Module HostProcessing . 13
3.3.2. Core Module ModuleHelper . 13
3.3.3. Prospect . 14

4. Application of HappyFace to GoeGrid 15
4.1. Setup . 15
4.2. Modules from Central Repository . 16
4.3. Local Modules . 18
4.4. Benefits . 19

5. Revised and New Modules 21
5.1. LogMessages . 21
5.2. Nagios Messages . 22
5.3. Hardware Ping Test . 23
5.4. ILO Query . 24
5.5. PBS Information . 25

v

Contents

6. Summary 27
6.1. Conclusion . 27
6.2. Prospect . 28

A. Excerpts and Examples 29
A.1. Host Lists . 29
A.2. Example for the Usage of ModuleHelper.py 30
A.3. Example for the Usage of LogMessages . 33
A.4. HappyFace Installation Scripts . 34

B. Sources 35

vi

1. Introduction

In 1994, the ATLAS collaboration published a proposal [1] of the basic design parame-
ters of the ATLAS Experiment which is one of the major experiments of the Large
Hadron Collider (LHC) [2,3] at the European high energy physics research centre
CERN. About fifteen years before the LHC was placed into operation, this paper esti-
mated a raw data output of about 106 GB per year as well as a required computing power
of more than 1012 instructions per second just for the offline data reconstruction – at
that time nearly infeasibly high requirements. Till this day, these requirements have even
risen, but have proven to be realisable, albeit only with the combined resources of ten
thousands of computers networked within a computing grid [4].
Obviously, the administration of these amounts of hardware poses a huge challenge.

Even though the computers are grouped into smaller clusters in computing centres all
around the world, the maintenance of a single cluster is a non-trivial task and cannot be
done all manually. Resources in this magnitude require continuous automated monitoring
to ensure a fast identification of failures and to minimise response times. Only with
sophisticated software tools for administration and monitoring an efficient and productive
operation of a cluster is possible.
The emphasis of this thesis is placed on the monitoring tool HappyFace and in partic-

ular its application to the cluster GoeGrid. Some of the services that are used to provide
the formerly impossible computing resources within the Worldwide LHC Computing
Grid will be described and the focus will be placed on the ongoing efforts of monitor-
ing them – with the goal to push the capacities of the available hardware further to the
boundaries.

1.1. The Worldwide LHC Computing Grid

It was not only the ATLAS Experiment which in the nineties pronounced the need
of enormous amounts of computing resources: the other three major experiments CMS,
ALICE, and LHCb of the LHC estimated similar requirements. The LHC was designed
as a proton-proton collider with a center-of-mass energy of 14 TeV at a luminosity of up

1

1. Introduction

to 1034 cm−2s−1. These unrivalled parameters are dictated by the diverse goals of the
collider: the most prominent target is the discovery (or the exclusion) of the Higgs boson
which is predicted by the Standard Model of particle physics (SM) with an estimated
production cross section of only several 10 pb [5,6] even at 14 TeV proton-proton collisions
in the SM. Likewise, precision tests of the SM and the search for new physics beyond the
SM (e.g. supersymmetric particles) require such high luminosities.
In order to achieve those, the LHC is filled with up to 2,808 bunches each containing

about 1011 protons which travel nearly at speed of light around the 27 km tunnel resulting
in a 31.6 MHz average bunch crossing rate (for technical reasons, larger gaps without
any bunches are inserted, so that the bunch crossing frequency is 40 MHz) [3]. For the
ATLAS Experiment, each bunch crossing produces on average about 23 collisions at
design luminosity leading to approximately 7 · 108 events per second [3]. The ATLAS
detector consisting of the nine major subdetectors listed in Table 1.1 gathers information
about the events through a total of about 9 · 107 read-out channels producing an average
of 1.6 MB [1] raw data per event.

Detector Element Channels
Inner Detector Pixel Detector [7] 80,363,520

Semiconductor Tracker [8] 6,279,168
Transition Rad. Tracker [9] 424,576

Calorimeters Liquid Ar Calorimeter [10] 182,468
Tile Calorimeter [11] 463,500

Muon System Thin Gap Chambers [12] 321,072
Resistive Plate Chambers [13] 350,000
Monitored Drift Tubes [14] 354,240
Cathode Strip Chambers [15] 55,296

Table 1.1.: The components of the ATLAS detector and their numbers of read-out chan-
nels.

The resulting vast amount of data obviously cannot be stored completely and it would
be pointless to do so, since most events only involve well-understood processes. That is
why a three level trigger system is introduced: on each trigger level, an algorithm decides
whether the event may contain sought-after information or can be discarded. Dedicated
clusters of special-purpose processors for the first trigger level and 2,200 dual core pro-
cessors for the second and third trigger level reduce the event rate to 200 “interesting”
events (which is to say 320 MB) per second. This way, the four major experiments of the
LHC produced a combined data output of 13 PB in 2010 [16].
To be able to store all this data redundantly, to analyse it, and to make it available

2

1.1. The Worldwide LHC Computing Grid

to scientists around the world, a suitable computing infrastructure had to be established
parallel to the construction period of the experiments. However, the requirements were
beyond the capacities realisable with CERN’s budget – the solution was the setup of a
grid involving more than hundred computing centres in 35 countries, the Worldwide
LHC Computing Grid (WLCG) [17].

1.1.1. Grid Computing

The idea of grid computing was particularly coined in 1998 by Ian Foster and Carl
Kesselman in their book “The Grid: A Blueprint for a New Computing Infrastruc-
ture” [4]; both are often called the fathers of the grid. The term grid itself is derived from
the power grid, alluding to the basic intention to make computing resources available
wherever required – just like from a power socket.
In that sense, a grid bundles computing resources from several (often heterogeneous)

domains connected by a network and makes them available to entities that are currently in
need of those resources. To achieve this, the individuals involved in the resource-sharing
agree on a common grid middleware, a software handling the basic communication
as a platform for resource sharing. In many cases, all participants are grouped into so-
called Virtual Organisations (VOs) – an example for such a middleware that relies
on VOs is gLite, a framework which is employed by the WLCG. The membership in a
VO authorises to access and use certain subsets of the resources, that could be to store a
file or to submit a computing job to a cluster.
To distinguish the notion of grid computing from somewhat similar terms like cloud

computing, Ian Foster published a list of three common aspects for a grid, which are
widely accepted as a good definition: [18]

• A grid coordinates resources that are not subject to centralized control.

• A grid uses standard, open, general-purpose protocols and interfaces.

• A grid delivers non-trivial qualities of service.

The WLCG is an excellent example for a grid, since its members are spread over the
whole globe, it uses the open-source middleware gLite and provides more than 100 PB of
disk space plus the capacity of more than 1.3 million CPUs (2011) [19] – which also makes
it the world’s largest computing grid [20].

3

1. Introduction

1.1.2. The Tier Sites

The WLCG is hierarchically structured into four layers that have different duties and
functions in the data processing chain. These layers are named starting from Tier 0 to
Tier 3; the grid computing centres (the so-called sites) belonging to Tier 0 and Tier 1 are
listed below in Table 1.2.

Tier 0 This tier consists of only one site, the CERN Computing Centre (CCC), located
on the CERN area near Geneva. All LHC raw data is processed and permanently
stored here, then it gets distributed to the Tier 1 sites. The CCC also does the first
reprocessing of the raw data.

Tier 1 The national Tier 1 computing centres are large enough to keep a share of a copy
of all important Tier 0 data, so that it is redundantly stored. Furthermore, they
offer high computing power for data reprocessing and distribute data to the Tier 2
sites.

Tier 2 These regional sites handle the more specific data analysis tasks and detector
calibrations as well as a share of Monte Carlo simulations.

Tier 3 The produced LHC data is also provided to institutes that do not have any formal
duties for the WLCG. These single computers as well as small local clusters form
the Tier 3.

Tier Sites Site Names
Tier 0 1 CERN-PROD (Switzerland)
Tier 1 11 TRIUMF-LCG2 (Canada)

IN2P3-CC (France)
FZK-LCG2 (Germany)
INFN-T1 (Italy)
NIKHEF (Netherlands)
NDGF-T1 (nordic countries)
PIC (Spain)
ASGC-LCG2 (Taiwan)
RAL-LCG2 (UK)
USCMS-FNAL-WC1 (USA)
BNL-ATLAS (USA)

Tier 2 135 e. g. GOEGRID (Germany)

Table 1.2.: Sites participating in the WLCG grouped by Tiers; site locations on a world
map [21].

4

2. The Grid Resource Centre
GoeGrid

The scientific motivation for cluster monitoring was elaborated in the first chapter; this
chapter introduces the subject of the monitoring, the GoeGrid computer cluster. The
term GoeGrid refers in fact to both the physical cluster located in Göttingen (Germany)
and the association of the multiple communities around it, which profit from the synergy
effects arising from the joint cluster operation.

2.1. Establishment

When the German Federal Ministry of Education and Research started an initiative for
the construction of a sustainable German grid infrastructure in 2005, the D-Grid [22],
representatives of the communities MediGRID [23] and TextGrid [24] began to plan the
setup and the funding of common grid resources in Göttingen. They had already found a
local technical partner, the IT service provider GWDG [25], with the required expertise and
capabilities for their venture, when shortly afterwards the High Energy Physics (HEP)
of the University Göttingen joined them as the third propellent community, motivating
all participants to a joint cluster operation. Even more communities like the theoretical
physics institute and the institute for astrophysics of the University Göttingen joined the
informal association GoeGrid later on. [26]

With fundings from the D-Grid initiative, the Helmholtz Alliance “Physics at the
Terascale“, the institutes of theoretical physics and of the II. Institute of Physics (HEP)
they were able to set up the required computing facilities and to integrate them into the
existing infrastructure of the GWDG. In May 2008, the newly founded Grid Resource
Centre GoeGrid celebrated the official inauguration of the resulting computing infras-
tructure, after it became WLCG certified in April and thus an official Tier 2 centre within
the WLCG [26].
Within the established formal structure of administration, regular Executive Board and

Technical Board meetings were introduced and the participating communities agreed on

5

2. The Grid Resource Centre GoeGrid

their resource shares, the cluster usage policies and their duties for the maintenance of
the cluster. As a result, a job scheduling algorithm which ensures that each community
receives cluster computing time proportional to their financial and non-financial contribu-
tions was introduced. Furthermore, the responsibilities for the maintenance of hardware
and software were assigned to the involved communities.

2.2. Hardware Setup

In Figure 2.1 the status quo of GoeGrid as of July 2011 is illustrated: the central connec-
tion hub is formed by four interconnected routers which are also connected to the internet.
Each of these routers has a number of worker nodes attached to it, the exact manner of
the connection and the type of the compute nodes both vary since the cluster evolved
in several extensions over time. The resulting slightly heterogeneous structure is maybe
not the most intuitive configuration, but it does not affect the functionality of the cluster
since the notion of grid computing is to connect even very heterogeneous systems and the
small differences between the single nodes are nearly transparent to the batch system.
Furthermore, 14 storage nodes (often called se for storage element) and various servers

are connected to the central routers. Most of the services are provided in virtual machines
(on the virt2...6 servers) to make them independent from each other, flexible, and easily
reinstallable.
A summary of the provided computing power is shown in Table 2.1: the 289 nodes

can provide a total peak computing power of about 27 TFlop/s and have a combined
HEPSpec2006 [27] score of 25500, each of the 2,484 cores having 2-3GB of RAM available.
The storage element offers more than half a petabyte of dCache [28] disk space dedicated
for the HEP community and an additional 352TB is provided via the Storage Area
Network (SAN) service for the all communities (January 2011) [29].

2.3. Software Setup

All communities involved in the GoeGrid have agreed on a common software setup for the
worker nodes: as operating system CentOS 5 [30] (64 Bit) is used, which is very similar to
Scientific Linux [31], but supported for the WLCG certification. On every reboot, each
node can be reset to a “fresh” installation by the Rocks Cluster Distribution [32].
Rocks furthermore provides the cluster monitoring tool Ganglia and several other useful
cluster management tools.
The incoming jobs are internally distributed by the batch system PBS [33] which is

6

2.3. Software Setup

se4..13

se, se2, se3

2 × 1 GBit each

c2-65...78

Enclosure 5

2 × 1 GBit each

c2-49...64

Enclosure 4

2 × 1 GBit each

c1-33...48

Enclosure 3

2 × 1 GBit each

c1-17...32

Enclosure 2

2 × 1 GBit each

c1-1...16

Enclosure 1

4 × 10 GBit interconnect

c6-1...24

Enclosure 9

S0775-
P1-01/02/03/04

2 × 1 GBit each

c8-17...32

Enclosure 12

2 × 1 GBit each

c8-1...16

Enclosure 11

2 × 1 GBit each

c7-1...16

Enclosure 10
se14

c0-1...30
c3-1...13

medi-srv

S0775-09-01

2 × 1 GBit each

c5-1...32

Enclosure 8

1 GBit

2 × 1 GBit each

c4-32...63

Enclosure 7

1 GBit

2 × 1 GBit each

c4-1...31

c4-64

Enclosure 6

1 GBit

virt2

virt3

ce

creamce

virt4

pbs

rocks fe

virt5

virt6

nfs

worker nodes

 10 G
B

it intercnct.
 10 G

B
it intercnct.

S0775-P2-01

dCache

S0775-P4-01

S0775-P3-01

various servers

2 × 4 GBit

2 × 4 GBit

2 × 4 GBit

2+10 GBit

2+10 GBit

2+10 GBit

Inter-
net

SAN

nagios
apel
bdii

Figure 2.1.: The network topology of the GoeGrid cluster as of July 2011.

HEPSpec2006 Peak Power
Count Node Type CPUs Cores / Node Benchmark [27] [TFlop/s]

30 HP ProLiant DL140 G3 2×X5355 8 × 2.66 GHz 2.55
78 HP ProLiant BL460c 2×X5355 8 × 2.66 GHz 6.64
13 MEGWARE Woodcrest 2× 5160 4 × 3.00 GHz 0.62
96 HP ProLiant BL2x220c G5 2×E5440 8 × 2.83 GHz 8.69
16 HP ProLiant BL2x220c G6 2×E5530 8 × 2.40 GHz 1.23
8 HP ProLiant BL460c G6 2×X5650 12 × 2.66 GHz 1.02
48 DELLPowerEdge 11GM610 2×X5650 12 × 2.66 GHz 6.13

289 Total Nodes 25,500 26.9

Table 2.1.: The different compute node types in GoeGrid and their combined computing
power in July 2011 [26].

basically a combination of the resource manager Torque and the job scheduler Maui.
For maximal compatibility, two separate grid middlewares are used: gLite is the official
middleware utilized by the WLCG while Globus TK is for the other communities [34].
All these middlewares are compatible with the PBS system; thus, job submission to the
cluster can be done in a number of ways, as indicated in Figure 2.2. Local users within
the network can submit jobs directly to the cluster without the help of any grid services;
users with an appropriate grid access can also submit their jobs via any of the supported

7

2. The Grid Resource Centre GoeGrid

middlewares.

PBS

Maui Scheduler

TorquegLite 3.1/3.2

Globus TK 4.0

Local UsersGrid Users

compute node

compute node

compute node

Figure 2.2.: Scheme of the job submission and distribution in GoeGrid [34].

For the data storage, multiple approaches are taken by the individual communities as
already indicated above. The largest disk space is however provided by the dCache [28]

system for the HEP (which is a data storage system widely used in the WLCG). Addi-
tionally, all communities can use the SAN storage service provided by the GWDG.
In addition to Ganglia, the infrastructure monitoring tool Nagios [35] monitors the

servers and the services that they provide. On top of these systems, HappyFace serves
as a summarising meta-monitoring tool, as will be discussed in the next chapter.

8

3. The HappyFace Project

The HappyFace Project [36] (in the following just referred to as HappyFace) is an open-
source framework for meta-monitoring of computing resources. It was initially designed
to monitor WLCG sites, but can be used for arbitrary monitoring information. The
first version of HappyFace was written in 2008 for the German WLCG Tier 1 centre. It
became obsolete with the development of HappyFace 2.0 in 2009 which relied on a more
sophisticated and generic approach.
This version has now – two years afterwards with continuous enhancements – proven to

be a stable and useful tool which is gradually becoming adopted by more sites. Aside from
the Karlsruhe Institute of Technology (KIT) [37] and the University of Göttingen [38], it is
employed in the University of Hamburg [39], the research centre DESY, and the university
RWTH Aachen [40]. The most recent version together with many available modules can be
extracted from the central repository from the university of Karlsruhe; more information
on the HappyFace installation can also be found on the development wiki page [36].

3.1. Meta-Monitoring

As already pointed out, the management of a computer cluster or any other large network
infrastructure requires the operation of monitoring software to be able to respond to up-
coming problems quickly. In most cases, one will however realise that a single monitoring
tool is not able to cover all monitoring aspects: different pieces of information and differ-
ent technologies often require different monitoring software and for a lot of information
sources there is no useful monitoring software available. Thus, it can be a very tedious
task for system administrators to look through all available monitoring information. Not
only that a general overview over all systems is not possible, some of the information
sources also have long generation or loading times.
That is where, in addition to traditional monitoring tools, Meta-Monitoring systems

such as HappyFace come into play. The idea of meta-monitoring is to collect information
from different systems and other sources to display a summary of all available information.
This allows the administrator to get a quick overview of the current situation and also

9

3. The HappyFace Project

provides several more advantages:

• The interface and the displaying of fetched information are easily customisable to
match the individual needs of the monitoring subject. That way, only relevant
information is displayed and it can be arranged intuitively.

• Besides the better overview, the meta-monitoring also allows to identify correlations
between the different monitoring aspects which enables a deeper understanding of
potential problems.

• Since the meta-monitoring system fetches information regularly, it is also able to
provide figures about the trend and history of monitored variables; additionally, it
can give valuable information when the cause of a problem is already in the past.

• If the system is set up intuitively, even people who do not have detailed knowledge
about the cluster or access to all of its monitoring systems are able to determine
the source of upcoming problems. This is especially useful for untrained personnel
such as shifters, and so on.

Moreover, there are two different approaches for the information displaying: lightweight
meta-monitoring systems only display short summaries and include hyperlinks to the
source for extended information, whereas more sophisticated systems try to include all
important data and build different views from the available input data for deeper analysis.
Both concepts can be realised in HappyFace because of its modular approach.

3.2. HappyFace Concepts

HappyFace consists of a framework, the HappyCore, which provides the basic function-
ality and a variety of modules that can be activated to retrieve information from external
sources. This way, it is easy to customise the monitoring to match the specific needs. The
core collects the output from all activated modules, arranges it in so-called categories to
give a brief overview for different topics and publishes the results on a website. The ad-
vantage of a website is that it can be made accessible anywhere where internet is available
or the access can be restricted to certain networks or browsers with correct authentication
certificates.
One of the key aspects of the created website is simplicity. Every piece of information

can be displayed within not more than three clicks and an intuitive rating system is
introduced: every module can set its status to be either good, bad or something in
between. The status is visualised with an icon (e. g. a smiley, which gives the project its

10

3.2. HappyFace Concepts

name). As these smilies are also determined as a summary of each category, an instant
overview over the current cluster functionality is possible.
The details of the data flow in HappyFace are shown in Figure 3.1. The HappyFace

framework launcher run.py is periodically executed, e. g. by a cronjob. It reads de-
fault and customized configuration files, the local configuration always having the highest
priority, to determine the activated modules. The modules are implemented in python
classes inheriting from ModuleBase. The classes are initialised and their data retrieval is
launched concurrently in parallel threads. All activated modules then begin to read their
configuration files and accordingly fetch information from external monitoring sources.
They process the retrieved information and write it into an SQLite database including
a timestamp. Furthermore, they return PHP code to the HappyFace framework that is
able to interpret the saved database entries and to convert them into a human-readable
output. All generated pieces of PHP code are then combined with code from the frame-
work (which enables for example the category view and the history functionality) and
the result is stored in a main PHP page which can be published by any webserver that
supports PHP5. All other required files as theme graphics and module specific cascading
stylesheets are also automatically stored in the same folder.

HappyFace

Framework

run.py

Config File
[setup]
output_dir = .

[category1]
modules =
 mod1,mod2

run.local

mod1.py

HappyFace

Modules

cfg

mod2.py
cfg

HappyFace

Website

index.php

HappyFace.db

HTML

Output

SQLite Database

for Caching and History

External

Monitoring

Sources

Figure 3.1.: Scheme of the data flow in HappyFace.

Another basic concept of HappyFace is the separation of the data retrieval from the
visualisation of the data. The information is fetched via python and only minimally
interpreted (for example to reduce its size) before it is stored into the database. The
interpretation and visualisation then is handled by PHP to ensure that even old fetched
data can be visualised according to the most recent rules. Smaller modules often disregard
this rule and store plain HTML code in the database which is not advisable, since it causes
the database to grow much faster and is a less generic approach.

11

3. The HappyFace Project

The last important principle of the framework mentioned here is the detachment of
local configurations and modules from the standard ones delivered within the HappyFace
package. This concept is reflected in the folder structure of a HappyFace installation:
there is a dedicated folder local for all local configuration files and modules that do not
belong to the HappyFace standard package. The additional modules are treated as if
they were in the normal module folder and the local configuration files replace the default
configurations.
Eventually, the resulting HappyFace websites and its components are shown in Fig-

ure 3.2. Most components are automatically generated by the HappyFace framework, the
modules only have to create their output and set their status to be correctly included into
the website.

title bar providing the history functio-

nality and authentication information

category navigation showing all

available categories and their states

individual modules with corresponding

output and status symbol

Figure 3.2.: The HappyFace instance monitoring the Tier 1 in Karlsruhe to illustrate
the functionality of the HappyFace website [37].

3.3. Recent Developments

In the course of this Bachelor’s Thesis, several changes to the HappyFace framework have
been applied. In the following section, some important modifications and additions will
be documented. First of all, several layout fixes have been applied to supply the user
interface with

• a quicker overview (by a clean layout)

• a more intuitive operation (by a consistent layout)

• a ubiquitary operation (by a compatible layout).

12

3.3. Recent Developments

The outcome of this is that HappyFace is even usable with small screen devices – which
enables system administrators to check their cluster status even with their internet-capable
mobile phone.

3.3.1. Core Module HostProcessing

As a number of modules require lists of hosts, worker nodes or servers of the monitored
cluster, the python module HostProcessing.py was added to the HappyFace framework.
This module provides several useful functionalities in this domain: lists of hosts can easily
be extracted from files with a common format which is described in the appendix. All
hosts from a subset of defined groups (also called sections) are available via a single
method.
Furthermore, the module offers classes to send ping packets to hosts asynchronously

and to perform DNS lookups for given host names.

3.3.2. Core Module ModuleHelper

The recently introduced ModuleHelper.py provides a variety of helper functions that can
make the development of many modules significantly easier while enhancing the informa-
tion content and the layout of the modules’ output. In order to take advantage of this
functionality, the module classes only have to be derived from ModuleHelper.py in addi-
tion to the usual ModuleBase.py. Then, smaller helper functions for the simple output
of user-friendly (error) messages and more complex tools such as automatic data source
selection, customisable table creation and fast HTML table parsing are available.
The usage of the helper module will encourage generic programming approaches as e. g.

the storage of properties of monitored entities in associative arrays and the storage of
the resulting arrays for all entities once more in an associative array. Such programming
concepts induce the creation of easily extendible and versatile code, which is a large
advantage for HappyFace modules. Furthermore, the compliance to such schemes leads
to the compatibility to many predefined functions that for example care for the database
storage of such structures. Fur further illustration of the simplifications, an example in
the appendix describes the methods of unpacking and displaying for such arrays in PHP.
There are even more things that the helper module is able to automatise like HTTP 1.1

downloads, HTML dropdown menus, and so on. Up until now, ModuleHelper.py has
been kept separately to minimize interference, but it may be moved to ModuleBase.py in
the future.

13

3. The HappyFace Project

Figure 3.3.: Example of a HappyFace module that relies on ModuleHelper to produce
a simple, easily customisable and informative output.

3.3.3. Prospect

The recent developments show that HappyFace is becoming a more and more generic tool
for meta-monitoring. Once only used by one cluster in Karlsruhe, it is now employed by
at least four WLCG sites and these sites have all begun to contribute their own modules
to the central repository. Moreover, the development of modules is becoming simpler
with lately introduced functionalities. The availability of more modules will increase the
attractiveness of HappyFace in the near future so that it might be adopted by even more
computer centres in the next years.
The increasing number of modules also results in a rising complexity for the configura-

tion of HappyFace. It was proposed to create a full list of all available modules together
with short descriptions or screenshots so as to counteract this. A similar approach would
be the creation of a module that is activated by default and that generates this list auto-
matically.
There are still many new ideas for the development of HappyFace. An important

point here might be an increasing interactiveness of the HappyFace website as well as
the creation of administration features – To achieve this, the HTTPS user certificate
authentication could be used for a number of purposes, e. g. to launch scripts via button
clicks on the website or to configure modules directly in the web. It was also suggested
to use the Google Chart Tools [41] for more of the generated plots and charts, since
these HTML5 charts consume less disk space and provide an interactive feedback for the
user.
Nevertheless, HappyFace has already become a stable and sophisticated tool that sim-

plifies cluster maintenances enormously. Its easy setup and high usefulness combined with
the universal approach could make it interesting for many computer centres – not only
WLCG sites.

14

4. Application of HappyFace to
GoeGrid

Since GoeGrid is a resource centre mainly involved as a Tier 2 in the WLCG, the idea
of using HappyFace for meta-monitoring seems to suggest itself. Indeed, HappyFace has
now been deployed for GoeGrid monitoring since more than a year – during this time,
many standard HappyFace modules haven been integrated and an even higher amount of
modules has been individually developed for the utilisation in GoeGrid. However, many
of the latter are not local modules anymore given that they have already been published to
the central HappyFace repository and therewith also have become a part of the HappyFace
package.
The outcome of these efforts is shown in the screenshot of the main HappyFace instance

of GoeGrid as in July 2011 in Figure 4.1 – the activated modules evidently cover a big
part of all monitoring subjects in the GoeGrid cluster.

4.1. Setup

The setup of HappyFace including the correct meta-monitoring configuration for GoeGrid
can be done in three simple steps: at first, the HappyFace prerequisites have to be fulfilled.
Instructions for this can be found on the HappyFace developer website maintained at
KIT [36]. Basically, this first step consists of ensuring that Python 2.6, SQLite and a
webserver supporting PHP5 are installed.
Secondly, the HappyFace framework and local configuration files have to be copied. For

this purpose, a dedicated folder should be created, the HappyFace framework then can
be extracted from the central SVN repository. The local configuration files for GoeGrid
are stored in a different SVN repository managed by CERN. Two scripts that automatise
the download process are presented in the appendix.
When the extraction of all necessary files has been successful, only the integration of

HappyFace is missing: the correct configuration of the website publishing directory and
a cronjob automatically launching HappyFace complete the installation.

15

4. Application of HappyFace to GoeGrid

Figure 4.1.: Screenshot of the HappyFace instance that is employed for the GoeGrid [38].

The two scripts in Listing A.5 and A.6 introduce a practical advantage for the process
of updating: to bring a HappyFace instance to the most recent version, only both scripts
have to be executed.

4.2. Modules from Central Repository

Currently, there are seven modules from the central repository utilized for GoeGrid meta-
monitoring – most of them have once been developed in Göttingen and have been inte-
grated in the HappyFace core package. The fact, that only very few modules created by
other sites are in use is due to differences between GoeGrid and the other sites deploying
HappyFace: GoeGrid is a Tier 2 centre dedicated to the ATLAS VO, this requires certain
services that the other sites do not use. The other Tiers employing HappyFace in Aachen,
Karlsruhe and Hamburg are mainly dedicated to the CMS experiment, which requires a
different set of services.
The following list outlines the features of the modules from the central repository in

GoeGrid in the order of appearance on the HappyFace webpage. For more information on

16

4.2. Modules from Central Repository

the recently revised or developed modules Nagios Messages, Hardware Ping Test
and ILO Query, see the next chapter.

GoeGrid SAM ATLAS Table This module was originally developed in Karlsruhe and
has been configured to show the results of relevant Service Availability Mon-
itoring (SAM) [42] tests for GoeGrid. SAM is an external monitoring framework
that automatically monitors gLite services from WLCG sites. The results of the
SAM tests are published to the ATLAS SAM dashboard [43], which is parsed by this
module.

Nagios Messages This recently revised module was created in Göttingen to summarise
the output of the widespread monitoring tool Nagios [35]. It displays Nagios warnings
and errors and changes its status accordingly.

Hardware Ping Test Because it generates its monitoring information on its own, rather
than just reading it from external sources, this module is quite atypical: it sends
ping packets to a given list of hosts to determine their online status. Also, it is
optionally able to combine the retrieved information with data gathered from a
PBS batch system.

Smartd Status The Smartd module is a typical application of the generic LogMessages.py
module which is described in the next chapter. It is able to parse the log files from
the Smart-daemon of Unix systems which provides information about the “health”
of local hard drives.

ILO Query This module was created in Göttingen specifically for worker nodes from the
manufacturer HP, which provide a configuration and maintenance interface called
Integrated Lights-Out (ILO) [44]. This service is used to find failures of the
HP hardware and to display the enclosure statuses.

dCacheInfoPool This is a module from Karlsruhe that displays general information about
a specified dCache group. In Göttingen, it is used four times to monitor the dCache
groups atlas, cache, dteam and OPS.

dCache Status of Space Tokens As dCache supports disk space reservations (via Space
Tokens), this module is able to check the status and the usage of these reservations.

17

4. Application of HappyFace to GoeGrid

4.3. Local Modules

The twelve local modules for the monitoring of GoeGrid all are either too specific or not
mature enough for the submission to the central repository; but in the future, some of
them might also be submitted. The following list describes these modules and the next
chapter gives more details on the utilization of the module PBS Information.

SAM Availability for GoeGrid This simple but useful module just displays a number of
externally created monitoring diagrams. Yet, it is not very sophisticated, since it
does neither download the graphics nor display the correct history.

SAM ATLAS This module displays the result for GoeGrid related SAM tests by querying
the SAM database directly, differentiating between critical and non-critical tests.

GoeGrid Panda Jobs If the computing jobs are submitted via the PanDA [45] ATLAS
service to the sites, this module is able to track the counts of current jobs in the
queues. It only needs a list of queue names to extract a number of relevant job
statistics.

GoeGrid Panda Queue Status This is also a PanDA related module, it is able to check
the status (online/offline) of a given set of PanDA queues.

DDM The local performance of the Distributed Data Management (DDM) of the
VO ATLAS can be monitored with this HappyFace module. To achieve this, the
information is extracted from the ATLAS Dashboard.

Apel Accounting for GoeGrid Apel, a specialized gLite service for the publishing of the
local Monte Carlo simulation results and the associated accounting, is monitored by
this module.

dCache Hotfile Detection This new module lists the most frequently accessed dCache
files to become aware of unusual behaviours. The data is provided by a project on
the dCache bottlenecks in GoeGrid [46].

dCache Web The dCache monitoring web page provides a lot of useful information. The
goal of this module is to make use of this, but up until now, it only evaluates the
queueInfo subpage.

dCache Pool Availability Since occasionally single dCache pools tended to get stuck, this
module was introduced to perform a simple dCache test on each pool and display

18

4.4. Benefits

any failures. Thus, this module does not query an external monitoring source, but
creates all information on its own, like the Hardware Ping Test module.

PBS Information For the monitoring of the distribution of current computing job dis-
tributions, two nearly identical modules have been created which follow the notion
of other PBS modules from the central repository, since incompatibilities of these
modules with the local installation emerged.

Cloudstatus This is a very simple module that just displays the content of the webpage of
the Cloud Monitoring [47,48], correcting any contained local links. This module
could be turned into a more generic module for the integration of arbitrary websites
to become part of the HappyFace core.

Monitoring Links As the name indicates, this is not a real monitoring module, since it
has only static content, it only displays a specified list of links. It might be possible
to extend this module to provide a generic editable content.

4.4. Benefits

For the administration of GoeGrid, HappyFace has indeed proven to be a very useful tool.
In many cases, upcoming problems were at first discovered by the administrators thanks
to the monitoring information of HappyFace and could thus be resolved more quickly.
In other cases, after the failures were identified, an appropriate HappyFace module was
designed to report critical situations early. Futhermore, HappyFace helps for a deeper
understanding of how the cluster works, how it behaves in special scenarios and what
correlations do exist – the more modules provide internal information, the better will be
the grasp of the cluster’s behaviour.
The configuration of HappyFace and the development of modules might both take some

time, but the efforts pay off: with it, a sustainable maintenance could be realised enabling
an easier cluster maintenance in the future.

19

5. Revised and New Modules

Within the course of this Bachelor’s Thesis, all modules that are applied in GoeGrid have
been revised and adjusted to the current cluster needs. In doing so, particular attention
was paid to establish a consistent and clear layout in addition to the compliance with all
HappyFace concepts. The revised modules were integrated into a fresh new HappyFace
instance; this way, a completely up-to-date installation without inherited ballast was
created.
In this chapter, some modules of interest that were completely rewritten or created

from scratch will be highlighted to explain their possible field of application. Moreover,
the integration of these modules in a HappyFace instance as well as possible extensions
are discussed.

5.1. LogMessages

Figure 5.1.: A sample application for the generic LogMessages module: Nagios log file
parsing.

The first depicted new HappyFace module is a rather simple one for introduction –
nevertheless, LogMessages is a very generic module that can be employed for a large

21

5. Revised and New Modules

number of purposes: it is able to read, parse, and reformat arbitrary log files to display
them in a well-arranged table showing only items of interest. The module is highly
versatile since log files are an important part of virtually any service in large scale compute
systems.
In Figure 5.1 an example for the application of LogMessages is depicted: the most

recent log file entries of the monitoring system Nagios are parsed and displayed. For a
better overview, irrelevant entries are sorted into a hidden table that is only displayed if
required and more important entries are highlighted with colours. This module is just a
sample, its short configuration can be found in the appendix for illustrational purposes.
A more specialized and sophisticated Nagios module is discussed in the next section.
In GoeGrid, the module LogMessages has another application: it monitors the Smartd

log file entries of all nodes in the cluster; from those, warnings with corresponding host-
names and times of last report are extracted and displayed as in Figure 5.2. The result is
a comprehensive overview of all hard drive problems reported by the Smart-Daemon.

Figure 5.2.: Another application for LogMessages: Smartd log file monitoring.

5.2. Nagios Messages

The infrastructure monitoring tool Nagios publishes its results in a more elaborate way
than in its log files: the results are commonly accessed via an interactive monitor-
ing website which provides – among other things – a full list of all checked services
and their test outcomes. This list is in many cases reachable via a URL similar to
http://nagios_server/nagios/cgi-bin/status.cgi?host=all after appropriate au-
thentication.
The module Nagios Messages is able to download such a webpage and extract the

relevant table from it. This mechanism was tested for Nagios 3.2.1, but it is likely to
work for other Nagios versions, too. If this succeeds, the table is parsed and all found

22

5.3. Hardware Ping Test

information is stored. The module then displays services with failures or warnings in a
configurable table, classifying their criticality mostly according to the suggestion from
the Nagios website. In Figure 5.3, such an output table is depicted, showing detected
problems with the server creamce.

Figure 5.3.: The output of the Nagios Messages module during creamce problems.

For the utilization of this module, it is only required to specify the source of the Nagios
information together with the user name and password combination. Obviously, Nagios
Messages is an easy to integrate and yet for many sites very useful module, since Nagios
is such a broadly used and versatile monitoring tool. All of its most important results
can then be accessed quickly through HappyFace.

5.3. Hardware Ping Test

This module is contrary to others rather complex, because it creates monitoring infor-
mation on its own: it sends ping packets and issues DNS lookups for all hostnames in
a specified host list. If a hostname cannot be resolved or if the pings to the respective
host do not succeed, the host is classified as offline and displayed by the module in a
configurable table as shown in Figure 5.4.
The retrieved information can also be utilized to build links to monitoring pages relevant

for the single computers, e. g. their Ganglia page or the respective ILO (see next section)
or enclosure node. An example for this is also depicted in columns three to five in
Figure 5.4. If the cluster is managed by a PBS batch system, the module is furthermore
able to take this as an additional input: the output of the command pbsnodes shows a
table with annotations to the hosts’ statuses. If available, this command can be set as
an additional information source – then, all found annotations are stored and can also be

23

5. Revised and New Modules

displayed as visible in the last column.

Figure 5.4.: The module Hardware Ping Test showing a list of 10 offline nodes.

The integration of the ping test module is simple: only a list of all hosts that are to
be tested is required, the PBS information is optional. In a second step, the links to
the monitoring systems can be set up also via the configuration file. Since the host list
may also contain multiple sections of hosts as described further in the appendix, it is also
possible to classify several sections as critical hosts (e. g. servers). These hosts will be
marked in red and trigger a bad module status if offline.

5.4. ILO Query

Compute nodes from the manufacturer HP feature a separate network interface for several
maintenance and monitoring tasks with the name Integrated Lights-Out (ILO). This
network interface provides access to a website that not only publishes status information
but also allows rebooting of the nodes and similar operations. Additionally, every node
enclosure offers an ILO interface, where the status information of all contained nodes
are summarized. The ILO Query module retrieves this data and displays all found
irregularities.
As in the the Hardware Ping Test module, the displayed information can be configured

to match the individual clusters needs. That way, links to other monitoring systems like

24

5.5. PBS Information

Ganglia can be inserted as illustrated in Figure 5.5.

Figure 5.5.: Example output from the module ILO Query: the module has found a
number of degraded compute nodes but no critical failures.

Other manufacturers also feature similar maintenance interfaces, Dell for example
equips its servers with so-called Dell Remote Access Cards (DRAC) [49]. It would be
a helpful extension of the ILO Query module to be able to retrieve the relevant information
from those different interfaces, to generate a vendor independent view of the current
hardware status. However, first approaches in this direction showed that this is difficult
for DRAC, since it requires login information.

5.5. PBS Information

The batch system PBS is able to export huge amounts of monitoring information, maybe
most conveniently via the qstat command. Since PBS is a commonly used batch system,
several modules for PBS monitoring were already available in the HappyFace core mod-
ules. However, these relied on a different PBS configuration and on python modules that
were not available for the local HappyFace installation in GoeGrid. For these reasons,
new modules with a similar approach were created for GoeGrid.
These modules parse the output of the command qstat -f and export the extracted

relevant information as an XML file in the same format as modules from the HappyFace
core do. The advantage of this intermediate format is the exchangeability of the informa-
tion source – there also exist converters for other batch systems like LSF or Condor.
The module PBS Information generates this XML file during the HappyFace initialisation
phase, so that all other modules are able to access the extracted information afterwards.
Since it uses a compatible format, the modules using this information from the Happy-

25

5. Revised and New Modules

Face core could be activated theoretically, but they need several yet unavailable Python
packages.
From the generated data, graphics of the current job distributions per queue and per

user group are created with the help of the Google Chart API [41]. An example of these
interactive diagrams is depicted in Figure 5.6. The diagrams show up until now only the
job count distribution as well as the compute time distribution. The next step will be to
select other interesting pieces of information to display from the comprehensive available
XML data.

Figure 5.6.: The module PBS Information produces interactive diagrams about the
current compute job distribution.

26

6. Summary

By mid of 2011, the four major experiments at the LHC have gathered a raw data output
of about 20 PB which has to be stored and analysed to make it available to thousands of
scientists around the world. Moreover, a large computing power is required to extract the
particular information that confirm known physical concepts by precision measurements
or lead to the discovery of new physical phenomena from this data. In order to supply
these computing resources, more than hundred computer centres around the world have
joined a grid to contribute to scientific advance – one of them is GoeGrid.
This German cluster has reached a peak computing power of 27 TFlop/s and provides

more than half a petabyte of disk space. These significant resources cannot be main-
tained effectively without the help of several monitoring tools that continuously check the
functionality of all components. To take this idea a step further, the meta-monitoring
system HappyFace collects data from the available monitoring information sources and
summarises the important aspects on a central website. The enhancement of this new
approach was the goal of this Bachelor’s Thesis. Thus, all local HappyFace modules have
been revised and additionally some new ones have been developed. Moreover, a number
of changes to the HappyFace framework itself have been applied and some generic local
modules have been added to the HappyFace core modules.

6.1. Conclusion

The idea of meta-monitoring has indeed proven to be very useful for GoeGrid: the Hap-
pyFace website has become the central point for the discovery of emerging failures and
in many cases even provides hints for the identification of the underlying problems. This
may be due to the significant improvements of the HappyFace instance within the last
time. The revised modules provide a clearer overview in a consistent layout and more
useful information is displayed.
Furthermore, special attention was paid to make the modules very generic. Because

of the interest of other HappyFace employing sites, these modules were added to the
HappyFace package – these were the first modules developed in Göttingen mature enough

27

6. Summary

to be included in the central repository. As a result, not only GoeGrid, but also other sites
can profit from their capabilities and the attractiveness of HappyFace for other computer
centres rises.
The same is true for the enhancements of the HappyFace framework: since modules can

now often be developed with less effort while producing a comprehensive and adaptable
output and some general HappyFace issues were solved, more (grid) sites may consider
trying to take advantage of the meta-monitoring framework – and more participants in the
HappyFace project would also have a positive effect on the development of the framework.
Last, but not least, the application of HappyFace to the GoeGrid has the aspect of a

sustainable maintenance effort: Whenever new, unexpected failures were encountered, a
HappyFace module could be written that issues warnings to prevent the same problems
from occurring again in the future. This way, the goal of a rising effectivity and reliability
of the GoeGrid can be reached.

6.2. Prospect

It has to be emphasised that HappyFace has proven to be a stable and useful utility just
as that there are still many ways to enhance and improve not only the local instance
of HappyFace, but also the HappyFace framework in general. For the application to
GoeGrid it seems to be obvious that there are nevertheless dozens of information sources
left from which interesting monitoring aspects could be extracted. For example, the new
PBS module provides a lot of information of which only the most important is displayed
yet and many detailed statistics could still be evaluated.
Furthermore, the usability of HappyFace in general could be clearly improved by more

interactive and administrative features on the website that could for example facilitate
the setup and the configuration of HappyFace and its modules. For that purpose, the
possibility of HTTPS authentication seems to have great potential.
In a nutshell, HappyFace may be adopted by more computer centres and become an

even more versatile tool in the next years to help administrators to ensure the highest
effectivity possible of their hardware and the provided services.

28

A. Excerpts and Examples

A.1. Host Lists

The syntax of host lists that are read by HostProcessing.py is illustrated by the file
hostlist.txt that is used for GoeGrid and printed below in Listing A.1. These standard-
ised files are separated into sections with arbitrary names to establish a logical grouping
of the hosts. Comments are introduced with a # character, if the line does not begin with
it, it is interpreted as a host definition. In addition to the hostname, its configuration
hostname and its enclosure name can be appended seperated by commas. Furthermore,
if the hostnames consist of consecutive numbers, this can be subsumed with the [a...b]
syntax which is extended to a list containing all numbers between a and b.

[server]
ce
nagios
rocks
pbs
apel
creamce
bdii

10 [virtual]
virt [1...4] , virt [1...4]. ilo

[se]
se, se.ilo
se[2...13] , se [2...13]. ilo

[worker -hp]
short name config enclosure
c0 -[1...30] , c0 -[1...30]. ilo

20 c1 -[1...16] , c1 -[1...16]. ilo , encl1.ilo
c1 -[17...32] , c1 -[17...32]. ilo , encl2.ilo
c1 -[33...48] , c1 -[33...48]. ilo , encl3.ilo
c2 -[49...64] , c2 -[49...64]. ilo , encl4.ilo
c2 -[65...78] , c2 -[65...78]. ilo , encl5.ilo

[worker -meg]

29

A. Excerpts and Examples

c3 -[1...13]

[worker -hp]
30 c4 -[1...31] , c4 -[1...64]. ilo , encl6.ilo

c4 -[31...63] , c4 -[31...63]. ilo , encl7.ilo
c4 -64, c4 -64.ilo , encl6.ilo
c5 -[1...32] , c5 -[1...32]. ilo , encl8.ilo

c6 -[1...12] , c6 -[1...12]. ilo , encl9.ilo
c6 -[17...28] , c6 -[17...28]. ilo , encl9.ilo

[worker -dell]
c7 -[1...16] , c7 -[1...16]. ilo , encl10.ilo

40 c8 -[1...17] , c8 -[1...17]. ilo , encl11.ilo
c8 -[17...32] , c8 -[17...32]. ilo , encl12.ilo

Listing A.1: hostlist.txt

A.2. Example for the Usage of ModuleHelper.py

An example module demonstrating many of the capabilities of ModuleHelper.py follows
which extracts the weather forecast for the next five days from http://www.weather.com.
The module consists of effectively less than 50 lines of code (not counting comments), but
can display a nice table (which is configurable via the configuration file) summarising the
weather forecast as shown in Figure A.1

Figure A.1.: Output of a very short example module that displays the weather forecast.

This is achieved by retrieving the input data with prepareInput and fetchInput, the
weather information is extracted with SearchElement and then the output is displayed
with a number of PHP generating functions.

from ModuleBase import *
from ModuleHelper import *

30

http://www.weather.com

A.2. Example for the Usage of ModuleHelper.py

class weather(ModuleBase , ModuleHelper):
def __init__(self ,module_options):

ModuleBase.__init__(self ,module_options)

prepare weather info source from configuration
self.prepareInput(’weather ’, ’source ’)

10

read display configuration from config file
self.display = self.readTableConfig(’display ’)

self.db_keys[’weather_info ’] = StringCol ()
self.db_values[’weather_info ’] = ’’

def run(self):
fetch source data
dat = self.fetchInput(’weather ’, ’source ’)

20 # and strip all line ends
weatherinfo = ’␣’.join(dat).replace(’\n’,’␣’).replace(’\r’,’␣’)

all weather info is in elements with tag name ’day ’
days = SearchElement(weatherinfo , ’day’, ’’, ’’).results

we only need to fetch the arrays content now
weather_info = {}
i = 0
for day in days:

30 i += 1
weather = {}
weather[’day’]=str(i)
weather[’info’]= SearchElement(day , ’t’, ’’, ’’).results [0]
weather[’t_low’]= SearchElement(day , ’low’, ’’, ’’).results [0]
weather[’t_high ’]= SearchElement(day , ’hi’, ’’, ’’).results [0]
weather_info[str(i)]= weather

pack retrieved information into db
self.db_values[’weather_info ’] = self.packArray(weather_info)

40

def output(self):
module_content = """ <?php

// unpack stored information from db into var $weather_info
""" + self.unpackArrayPHP(’$data [" weather_info "]’, ’$weather_info ’,

’$keys’) + """
""" + self.sortTablePHP(self.display , ’$weather_info ’) + """

// create raw view from $weather_info into $div_raw
""" + self.rawDataPHP(’$weather_info ’, ’$div_raw ’, ’$keys ’, ’day’) +

"""
50

// create table
""" + self.beginTablePHP(self.display , ’$table ’) + """

31

A. Excerpts and Examples

foreach ($weather_info as $weather)
{

// determine status of weather
$tclass = ’warning ’;
if((strpos (strtolower ($weather [’info ’]), ’showers ’)) !== FALSE)

$tclass = ’critical ’;
if((strpos (strtolower ($weather [’info ’]), ’sunny ’)) !== FALSE)

60 $tclass = ’ok ’;

""" + self.addRowPHP(self.display , ’$tclass ’, ’$weather ’, ’$table ’
) + """

}
""" + self.endTablePHP(self.display , ’$table ’) + """

$first = ’weather view ’; $second = ’raw data view ’;
""" + self.showDivDropDownPHP ([(’weather_div_first ’, ’$first ’, ’

$table ’),(’weather_div_second ’, ’$second ’, ’$div_raw ’)]) + """
?>"""

return self.PHPOutput(module_content)

Listing A.2: weather.py

The code works with the configuration file below.

[setup]
mod_title = Weather forecast
mod_type = rated
weight = 1.0
definition = Extracts the forecast from weather.com.
instruction =

[weather]
sourceuse = download

10 sourcefile = /directory/to/file.txt
sourcedownload = wget|html||http :// xoap.weather.com/weather/local

/GMXX0194?cc=*& link=xoap&par =1068094921& dayf =5& key=d7f30dc6bd9cb8f5&
unit=m

sourcecommand = [’commandtogetweather ’, ’parameter ’]

[display]
specify any columns to be shown
column {num} = { column title }[% nowrap %];{ column content };{

column hover text };{ column link url}
column1 = Day%nowrap %;%day%;;
column2 = Weather%nowrap %;% info %;;
column3 = Temperature ;% t_high% C; from %t_low% up to %

t_high% C;
20 # token that is used for sorting

sort = day(ASC)

Listing A.3: weather.cfg

32

A.3. Example for the Usage of LogMessages

A.3. Example for the Usage of LogMessages

The configuration file for the Nagios log file parsing HappyFace module shown in Figure 5.1
is listed with descriptive comments in Listing A.4. Obviously, for a well-arranged output
only few lines are required.
[setup]
mod_title = Nagios Log Messages
mod_type = rated
weight = 1.0
definition = Displays the Nagios log files
instruction = tail /var/log/nagios/nagios.los

[logfile]
specify source of information : ’file ’ for a local file , ’download ’ for

10 # an http download and ’command ’ for the output of a command
loguse = command

logfile = /var/log/nagios/nagios.log
logdownload = wget|html||http :// servertoquery/nagioslog.php
logcommand = [’tail ’, ’/var/log/nagios/nagios.log ’, ’-n 20’]

[logrules]
rules for classification in order of descending priority
each rule consists of a pattern (*/? for arbitrary string / character)

20 # and a class , seperated by ";" - available classes in descending
criticalness : critical , warning , ignore , hide , delete
rule1 = *SERVICE ALERT*WARNING *; warning
rule2 = *SERVICE ALERT*CRITICAL *; critical
rule3 = *SERVICE ALERT*OK*; ignore
rule4 = *;hide

[logdisplay]
column specification in format : Title;Group
a group is a either a list of source columns e.g. 1;2;3 or a regexp

30 # combined with the relevant bracket nums: ^(.{3}) ;2 gives first 3 chars
column1 = Host/Service ;^\[[0 -9]*\]\s*([A-Za-z0 -9\s:,._-]+);2
column2 = Status ;3
column3 = Details ;6

group for sorting and order ascending or descending
sort = ^\[[0 -9]*\]\s*([A-Za -z0 -9\s:,._-]+);2
sortorder = ascending

group that has to be unique to eliminate duplicates
40 unique = 1;2;3;4

this is the source column delimiter , it can be space , tab , ;, ...
columndelimiter = ;

Listing A.4: nagioslog.cfg

33

A. Excerpts and Examples

A.4. HappyFace Installation Scripts

For the installation as well as the updating of the GoeGrid HappyFace instance, two
convenient scripts have been written to simplify the procedure. The first script downloads
or updates the HappyFace framework, whereas the second script downloads or updates
the local configuration files for GoeGrid from a different SVN repository managed by
CERN.
svn co https :// ekptrac.physik.uni -karlsruhe.de/public/HappyFace/trunk .

Listing A.5: update_happycore.sh

mkdir HappyFace
mkdir HappyFace/local
svn co https ://svn.cern.ch/reps/atlasgrp/Institutes/Goettingen/HappyFace

/trunk HappyFace/local/

echo Please check HappyFace/local/cfg/run.local before running the new
HappyFace instance!

Listing A.6: update_happylocal.sh

34

B. Sources

Table 1.1: Computer generated image of the whole ATLAS detector, Joao Pequano
http://cdsweb.cern.ch/record/1095924

Table 1.2: World map image from GStat 2.0 – Geo View
http://gstat-prod.cern.ch/gstat/geo/openlayers

35

http://cdsweb.cern.ch/record/1095924
http://gstat-prod.cern.ch/gstat/geo/openlayers

Bibliography

[1] W. Armstrong, et al., ATLAS: technical proposanal for a general-purpose pp experi-
ment at the large hadron collider at CERN, CERN/LHCC pages 171–173 (1994)

[2] D. Boussard, et al., The Large Hadron Collider conceptual design, CERN/AC (1995)

[3] C. Lefevre, LHC: the guide (english version) (2008), http://cdsweb.cern.ch/
record/1092437/files/CERN-Brochure-2008-001-Eng.pdf

[4] C. Kesselman, I. Foster, The grid: blueprint for a new computing infrastructure,
Morgan Kaufmann Publishers (1998)

[5] Z. Kunszt, S. Moretti, W. Stirling, Higgs production at the LHC: an update on cross
sections and branching ratios, Zeitschrift für Physik C Particles and Fields 74, 479
(1997)

[6] LHC Higgs Cross Section Working Group, S. Dittmaier, C. Mariotti, G. Passarino,
R. Tanaka (Eds.), Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables,
CERN-2011-002 (CERN, Geneva, 2011), 1101.0593

[7] G. Aad, M. Ackers, F. Alberti, M. Aleppo, G. Alimonti, J. Alonso, E. Anderssen,
A. Andreani, A. Andreazza, J. Arguin, et al., ATLAS pixel detector electronics and
sensors, Journal of Instrumentation 3, P07007 (2008)

[8] A. Ahmad, Z. Albrechtskirchinger, P. Allport, et al., The silicon microstrip sensors of
the ATLAS semiconductor tracker, Nuclear Instruments and Methods in Physics Re-
search Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
578(1), 98 (2007)

[9] T. Åkesson, et al., Status of design and construction of the Transition Radiation
Tracker (TRT) for the ATLAS experiment at the LHC, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 522(1-2), 131 (2004)

37

http://cdsweb.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf
http://cdsweb.cern.ch/record/1092437/files/CERN-Brochure-2008-001-Eng.pdf
1101.0593

Bibliography

[10] N. Buchanan, et al., Design and implementation of the Front End Board for the read-
out of the ATLAS liquid argon calorimeters, Journal of Instrumentation 3, P03004
(2008)

[11] T. T. C. G. of the ATLAS Collaboration, The Production and Qualification of Scintil-
lator Tiles for the ATLAS Hadronic Calorimeter, Technical Report ATL-TILECAL-
PUB-2007-010. ATL-COM-TILECAL-2007-026, CERN (2007)

[12] K. Nagai, Thin gap chambers in ATLAS, Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 384(1), 219 (1996)

[13] A. D. Simone, The calibration of the resistive plate chambers of ATLAS, Journal of
Physics: Conference Series 219(3), 032036 (2010), URL http://stacks.iop.org/
1742-6596/219/i=3/a=032036

[14] M. Livan, Monitored drift tubes in ATLAS, Nuclear Instruments and Methods in
Physics Research-Section A Only 384(1), 214 (1997)

[15] P. O’Connor, V. Gratchev, A. Kandasamy, V. Polychronakos, V. Tcherniatine, J. Par-
sons, W. Sippach, Readout electronics for a High-Rate CSC detector, in Fifth Work-
shop on Electronics for LHC Experiments, Snowmass Colorado (1999)

[16] G. Brumfiel, Down the petabyte highway, Nature 469, 282 (2011)

[17] WLCG – Grid computing, URL http://lcg.web.cern.ch/lcg/public/grid.htm

[18] I. Foster, What is the Grid? A Three Point Checklist (2002), URL http://dlib.
cs.odu.edu/WhatIsTheGrid.pdf

[19] 2011-2012 Confirmed C-RRB Resource Tables (2010), URL http://lcg.web.cern.
ch/lcg/Resources/WLCGResources-2010-2012_15DEC2010.pdf

[20] What is the Worldwide LHC Computing Grid?, URL http://lcg.web.cern.ch/
lcg/public/overview.htm

[21] GStat Geo View, URL http://gstat-prod.cern.ch/gstat/geo/openlayers

[22] H. Hegering, D-Grid: Schritte zu einer nationalen e-Science-Initiative, E-Science and
Grid–Ad-hoc-Netze–Medienintegration 18, 285 (2004)

[23] MediGRID Homepage, URL http://medigrid.de

38

http://stacks.iop.org/1742-6596/219/i=3/a=032036
http://stacks.iop.org/1742-6596/219/i=3/a=032036
http://lcg.web.cern.ch/lcg/public/grid.htm
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
http://dlib.cs.odu.edu/WhatIsTheGrid.pdf
http://lcg.web.cern.ch/lcg/Resources/WLCGResources-2010-2012_15DEC2010.pdf
http://lcg.web.cern.ch/lcg/Resources/WLCGResources-2010-2012_15DEC2010.pdf
http://lcg.web.cern.ch/lcg/public/overview.htm
http://lcg.web.cern.ch/lcg/public/overview.htm
http://gstat-prod.cern.ch/gstat/geo/openlayers
http://medigrid.de

Bibliography

[24] TextGrid Homepage, URL http://textgrid.de

[25] Gesellschaft für wissenschaftliche Datenverarbeitung mbH Göttingen (GWDG), URL
http://gwdg.de

[26] C. Ay, J. Meyer, A. Quadt, C. Boehme, O. Haan, U. Schwardmann, Das Göt-
tinger Grid-Ressourcen-Zentrum GoeGrid, Grid-Technologie in Göttingen GWDG-
Bericht Nr. 74, 5 (2009)

[27] HEPSpec2006 Benchmark, URL https://twiki.cern.ch/twiki/bin/view/
FIOgroup/TsiBenchHEPSPEC

[28] M. de Riese, P. Fuhrmann, T. Mkrtchyan, M. Ernst, A. Kulyavtsev, V. Podstavkov,
M. Radicke, N. Sharma, D. L. andTimur Perelmutov, T. Hesselroth, G. Behrmann,
T. Zangerl, P. Millar, O. Syngea, A. Petersen, The dCache Book for 1.9.12-series
(2011), URL http://www.dcache.org/manuals/Book-1.9.12/Book-a4.pdf

[29] J. Meyer, A. Quadt, P. Weber, ATLAS Tier-2 at the Compute Resource Center
GoeGrid in Göttingen, in Conference on Computing in High Energy and Nuclear
Physics 2010, Taipei, Taiwan, 18-22 Oct 2010 (2010)

[30] CentOS Homepage, URL http://centos.org/

[31] Scientific Linux at CERN, URL http://linux.web.cern.ch/

[32] Rocks Cluster Distribution Homepage, URL http://www.rocksclusters.org/

[33] Maui and Torque providing homepage, URL http://clusterresources.com

[34] U. Schwardmann, GoeGrid – a resource center for grid related activities in Göttingen
(2009), URL http://clusterday2011.aei.mpg.de/cgd2009/talks/schwardmann/
GoeGrid-Cluster.pdf

[35] Nagios – offical provider homepage, URL http://nagios.com

[36] The HappyFace Project, URL https://ekptrac.physik.uni-karlsruhe.de/trac/
HappyFace

[37] HappyFace instance for Karlsruhe, URL http://www-ekp.physik.uni-karlsruhe.
de/~happyface/gridka/

[38] HappyFace instance for Göttingen, URL http://happyface-goegrid.gwdg.de

39

http://textgrid.de
http://gwdg.de
https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC
https://twiki.cern.ch/twiki/bin/view/FIOgroup/TsiBenchHEPSPEC
http://www.dcache.org/manuals/Book-1.9.12/Book-a4.pdf
http://centos.org/
http://linux.web.cern.ch/
http://www.rocksclusters.org/
http://clusterresources.com
http://clusterday2011.aei.mpg.de/cgd2009/talks/schwardmann/GoeGrid-Cluster.pdf
http://clusterday2011.aei.mpg.de/cgd2009/talks/schwardmann/GoeGrid-Cluster.pdf
http://nagios.com
https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace
https://ekptrac.physik.uni-karlsruhe.de/trac/HappyFace
http://www-ekp.physik.uni-karlsruhe.de/~happyface/gridka/
http://www-ekp.physik.uni-karlsruhe.de/~happyface/gridka/
http://happyface-goegrid.gwdg.de

Bibliography

[39] HappyFace instance for Hamburg, URL http://wwwiexp.desy.de/groups/cms/
tier2_monitoring/HappyFaceV2/trunk/webpage/index.php

[40] HappyFace instance for Aachen, URL http://grid-vo-cms.physik.rwth-aachen.
de

[41] Google Chart Tools API, URL http://code.google.com/apis/chart/

[42] Service Availability Monitoring (SAM) Overview, URL https://twiki.cern.ch/
twiki/bin/view/LCG/SAMOverview

[43] ATLAS SAM Dashboard, URL http://dashb-atlas-sam.cern.ch/

[44] HP Integrated Lights-Out (ILO) Advanced, URL http://h18013.www1.hp.com/
products/servers/management/remotemgmt.html

[45] T. Maeno, PanDA: distributed production and distributed analysis system for ATLAS,
Journal of Physics: Conference Series 119(6) (2008), URL http://stacks.iop.
org/1742-6596/119/i=6/a=062036

[46] C. G. Wehrberger, Hotfile- and Bottleneck-Recognition in the dCache system,
II.Physik-UniGö-BSc-2011/06, Georg-August University Göttingen (2011)

[47] J. Kennedy, C. Serfon, G. Duckeck, R. Walker, A. Olszewski, S. Nderitu, the Atlas
GridKa operations team operations team, ATLAS computing operations within the
GridKa Cloud, Journal of Physics: Conference Series 219(7), 072039 (2010), URL
http://stacks.iop.org/1742-6596/219/i=7/a=072039

[48] German Cloud Monitoring, URL http://happyface-goegrid.gwdg.de/cloudmon/
cloudmon.html

[49] DRAC: Dell Remote Access Card, URL http://www.dell.com/content/topics/
global.aspx/power/en/ps2q02_bell

40

http://wwwiexp.desy.de/groups/cms/tier2_monitoring/HappyFaceV2/trunk/webpage/index.php
http://wwwiexp.desy.de/groups/cms/tier2_monitoring/HappyFaceV2/trunk/webpage/index.php
http://grid-vo-cms.physik.rwth-aachen.de
http://grid-vo-cms.physik.rwth-aachen.de
http://code.google.com/apis/chart/
https://twiki.cern.ch/twiki/bin/view/LCG/SAMOverview
https://twiki.cern.ch/twiki/bin/view/LCG/SAMOverview
http://dashb-atlas-sam.cern.ch/
http://h18013.www1.hp.com/products/servers/management/remotemgmt.html
http://h18013.www1.hp.com/products/servers/management/remotemgmt.html
http://stacks.iop.org/1742-6596/119/i=6/a=062036
http://stacks.iop.org/1742-6596/119/i=6/a=062036
http://stacks.iop.org/1742-6596/219/i=7/a=072039
http://happyface-goegrid.gwdg.de/cloudmon/cloudmon.html
http://happyface-goegrid.gwdg.de/cloudmon/cloudmon.html
http://www.dell.com/content/topics/global.aspx/power/en/ps2q02_bell
http://www.dell.com/content/topics/global.aspx/power/en/ps2q02_bell

Acknowledgements

Working on a thesis may in most cases at some times become exhausting – nevertheless,
working on this particular topic was different due to the assistance of many people. It is
a pleasure to thank you!
First of all, I would like to express my gratitude to Prof. Dr. Arnulf Quadt, not only

because he found a Bachelor’s Thesis perfectly tailored to my wishes but also for the
welcoming atmosphere of the institute he established. Moreover, I would like to thank
him and my second referee Prof. Dr. Johannes Haller for the efforts they put into the
correction of this thesis.
I am deeply grateful for my supervisors Dr. Jörg Meyer and Dr. Pavel Weber who

turned out to be the best supervisors imagineable – always available within minutes but
also always understanding every stressful situation that I had. Thank you for breathing
life into this thesis.
It is hard to overstate my gratitude to Christian Wehrberger – for all the help, all

the cheering and for being the best apartment fellow possible. Finally, I want to express
my profound relationship, friendship, and exaggerated gratitude to him, Miriam Reuter,
Lucas Lang, Christina Heinicke, Friedrich Bös, and Thilo Müller von der Grün. We do
what we must because we can.

41

Eigenständigkeitserklärung –
Statement of Authorship

Erklärung nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Physik und
den Master-Studiengang Physik an der Georg-August Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbstständig verfasst habe, keine
anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und alle Stellen, die
wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche
kenntlich gemacht habe.

Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise,
im Rahmen einer nichtbestandenen Prüfung an dieser oder einer anderen Hochschule ein-
gereicht wurde.

Declaration according to §13(8) of the Examination Regulations for the Bachelor’s
Degree and the Master’s Degree of the Georg-August University Göttingen:

I declare that this Bachelor’s Thesis has been composed by myself, unless otherwise
acknowledged in the text. All verbatim extracts have been distinguished by quotation
marks, and all sources of information have been specifically acknowledged.

Furthermore, I declare that this thesis has not been submitted in any previous unsuc-
cessful application for a degree neither at this university nor at any other.

Göttingen, 13.07.2011

(Georg Jahn)

43

	1 Introduction
	1.1 The Worldwide LHC Computing Grid
	1.1.1 Grid Computing
	1.1.2 The Tier Sites

	2 The Grid Resource Centre GoeGrid
	2.1 Establishment
	2.2 Hardware Setup
	2.3 Software Setup

	3 The HappyFace Project
	3.1 Meta-Monitoring
	3.2 HappyFace Concepts
	3.3 Recent Developments
	3.3.1 Core Module HostProcessing
	3.3.2 Core Module ModuleHelper
	3.3.3 Prospect

	4 Application of HappyFace to GoeGrid
	4.1 Setup
	4.2 Modules from Central Repository
	4.3 Local Modules
	4.4 Benefits

	5 Revised and New Modules
	5.1 LogMessages
	5.2 Nagios Messages
	5.3 Hardware Ping Test
	5.4 ILO Query
	5.5 PBS Information

	6 Summary
	6.1 Conclusion
	6.2 Prospect

	A Excerpts and Examples
	A.1 Host Lists
	A.2 Example for the Usage of ModuleHelper.py
	A.3 Example for the Usage of LogMessages
	A.4 HappyFace Installation Scripts

	B Sources

